

Optimising Cooling Water Use

The Water Consumption of 50 Cooling Towers in Victoria

Sven Denton : Principle Consultant

AquaKlar Analytical Services Melbourne, Sydney and Brisbane

www.airah.org.au

Water Consumption

How much water is used in associated with Cooling Towers?

4,100

Victoria

Number of	litres/day
Towers	consumption

80 million

Cooling Tower Water Efficiency

Simply:

How much water a tower actually used

VS

How much water the cooling system would have used when run as specified

Cooling Towers Need to Lose Water

- Cooling Tower cool primarily by evaporation.
- Remaining water minerals concentrate.
- Concentrated water needs to be bled, to allow dilution by fresh water.

• Cycles of Concentration = Make Up/Bleed

Cycles of Concentration

For every 1m³ of makeup water

Calculations

Saving: 150litres for 1m³ of makeup

How Do We Calculate Cycles of Concentration

Approximately:

Conductivity in Cooling Water divided by Conductivity in Make Up

Accurately:

By mineral analysis

Scope of Project

- 469 Cooling Systems between January and August
- 3 GL/yr water use by these towers
- 220kL Excess water (against best practice)
- 8% Excess water
- Extrapolated to State of Victoria 1.9 GL Excess water

Outcomes

Relationship	No Relationship
 Presence of control 	• Size
equipment	• Age
 Metro vs Non Metro 	 Manufacturer
 Overflowing systems (not many – but high water users) 	• Type
	 Water treatment
	service provider
	•Side stream filtration

Size

% In.Effncy

Further Investigation – 50 Worst Systems

- Basic Cooling System Information
- Site Name
- Site Address & Contact
- System Common name:
- System CTS:
- Tower Manufacturer
- Tower Model
- Serial No
- Type of Cooling Tower
- Location of Tower
- No of Towers in System
- Width x Length x Height (m)
- Tower Volume (litres)
- System volume (litres)
- Recirculation Rate (I/s)
- Temperature differential (oC)
- Est Max evaporation rate (I/s)
- Calculated Ht Rej based on Evap (kW)
- Est Max Heat rejection (kW)
- Observed leaks/overflows
- Observed drift/splashout
- Services/Plant being cooled
- Water Treatment service provider

- Water treatment being employed
- Water treatment control equipment.
- Water source
- Visual condition of system
- Side stream filtration?
- Materials of construction
- Year tower built
- Life expectancy of Tower
- Future plans for expansion/removal
- Where does the bleed go
- Operational Data
- Raw water quality
- Cooling tower quality (monthly)
- Recommended water quality provided by the water treatment service provider.
- Estimated cooling loads
- Water meter or bill readings

50 Worst Towers

- 11% of original sample
- 30% of original sample excess water
- Water conservation measures communicated
- Many sites implements conservation measures

50 Worst Towers – Outcomes

• Initially

Total water :454 ML/yearExcess water :93 ML/year

• 1st Visit (4 months)

Total water :317 ML/yearExcess water :38 ML/year

• 2nd Visit (8 months)

Total water :332 ML/yearExcess water :32 ML/year

51% reduction in total excess water

50 Worst – Main Reasons for Excess Water

Issue	Number of cases
Overflow (confirmed)	17
Overflow (suspected)	5
Control issues	8
Leaks	4
Tower balancing issues	3

Recommendations

- Identify the worst performing towers
 - Non metro focus
 - Automated bleed on all systems
 - Encourage service providers to report cycles of concentration and water efficiency
 - Encourage alarms on control equipment
- Provide analysis tools
 - Upgrade to efficiency calculator
- 3rd Party Audits
 - Provided by water retailer
- Communication
 - AIRAH best practice guidelines
 - DA17 updated
 - Regular training courses are presented.

Thank you

Any Questions ?

THE END