

- Air-cooled Chiller Energy: 1.10 kW/ton
- Water-cooled Chiller Energy: o.6o kW/ton

Substantial difference in chiller energy between the two alternatives!

The larger the project, the more benefit from water cooled systems

- Chiller energy: o.60 kW/ton
- Cooling Tower energy: o.o6 kW/ton

Chiller Energy Consumption Reduces with Colder Condenser Water Temperature

Let the Cooling Tower Do the Work

• Effect of CWT on Chiller Energy

Condenser Water Temperature	Typical Chiller Energy	Energy Savings
29.5°C	o.570 kW/ton	Base
28.5°C	o.542 kW/ton	5%
26.5°C	o.524 kW/ton	8%
24°C	o.484 kW/ton	15%
21°C	o.450 kW/ton	21%

Tower Operational Strategy – "Run Wild"

Energy / Carbon Footprint

• Lower Design Point Temperatures

Why design for 35°C/29.5°C when the ambient design wet-bulb is lower?

• Design for Nominal Sized Equipment

City	Design WB (°C)	CWT (°C)	Chiller kW/ton	Chiller Energy Savings
Brisbane	25.5	29.5	0.570	Base
Sydney	24.0	28.3	0.540	5%
Melbourne	23 .0	27.6	0.534	6.5%
Adelaide	21.0	26.1	0.518	9%
Canberra	20.0	25.3	0.505	11.5%

Sizing Tower for 1°C Colder Water Yields
Payback in 1 – 2 Years

Energy / Carbon Footprint

• Select larger cooling towers for lower kW/ton

Typically 1 – 2 Year Payback <u>plus</u> Lower Sound Levels and Less Costly Electrical Service

• Independent Performance Certification is Key

Deficient Performance Can Be Difficult to Detect

- System designed for 1% peak-ambient occurrence
- Building load varies with ambient temperatures
- Occupancy, lighting, and computer loads are independently variable
- Safety factors are often applied to account for uncertainties
- Interconnected system components affect each other, typically through energy consumption

The Cost Effect of Wasted Energy At \$0.15 per kWh 90% tower costs \$6,970 each year (46,500 kWh wasted) **5 X Tower Cost** 80% tower costs \$16,140 **each year** (107,600 kWh wasted) System Life! 70% tower costs \$26,780 <u>each year</u> (178,600 kWh wasted) • At \$0.20 per kWh • 90% tower costs \$9,300 <u>each year</u> **7 X Tower Cost** • 80% tower costs \$21,520 each year over **System Life!** • 70% tower costs \$35,720 <u>each year</u>

Ice Thermal Storage

- Reduces electrical demand at peak hours
- Allows power plant level loading
 - Base load plants are generally the most efficient
 - Lower power line losses at night

Ice Thermal Storage

 Lower green house gas emissions from power plants during nighttime hours

Ice Thermal Storage

- Smaller refrigeration plant, less refrigerant charge
- Enables the use of lower temperature air distribution which reduces air-handler and pump energy and size

